Genes and Mechanisms Associated with Plant Interaction with *F. graminearum*

Poster # 55

Outline

- Signaling mechanisms contributing to plant defense and susceptibility to *F. graminearum*
- Candidate genes for enhancing FHB resistance
- Targeting non-host defense mechanism for controlling FHB
- Plant metabolites for enhancing FHB resistance

1. Signaling mechanisms contributing to plant defense and susceptibility to *F. graminearum*

General Approach

- Utilize genetic and molecular tools in *Arabidopsis thaliana* to identify and characterize plant mechanisms:
 - Contribute to resistance
 - Contribute to susceptibility
- Study the role of candidate mechanisms in wheat interaction with *F. graminearum*

Picture: R. Makandar

http://ec.europa.eu/research/qualityof-life/image/arabidopsis.jpg

Phases of F. graminearum infection

- 1. Initial biotrophic phase
- 2. Subsequent necrotrophic phase
- Salicylic acid dependent defenses primarily effective against biotrophic pathogens
- Jasmonate and ethylene dependent defenses primarily effective against necrotrophic pathogens

Jasmonic acid

ethylene

Salicylic acid

SA is essential for controlling *F. graminearum* disease in *Arabidopsis thaliana*

Irrigating plants with SA enhances resistance against *F. graminearum*

Constitutive expression of *Arabidopsis thaliana NPR1* reduces FHB severity in transgenic wheat cv. Bobwhite

SA signaling through NPR1 restricts fungal spore germination

Pre-treatment with methyl-JA attenuates NPR1conferred resistance to F. graminearum

JA functions as a susceptibility factor during the early stages of infection by limiting the activation of SA signaling

Methyl-JA limits FHB symptoms when applied during later stages of infection

Cross talk between SA and JA signaling

2. Candidate genes for enhancing FHB resistance

A 9-LOX encoding gene is associated with susceptibility to *F. graminearum*

- Lipoxygease synthesize precursors for oxylipins
- In maize, 9-LOXs are susceptibility factors for disease caused by Fusarium verticillioides and Colletotrichum graminicola

Ongoing: RNAi mediated silencing of 9-LOXs in wheat

Overexpression of *PAD4* enhances resistance to *F. graminearum* in Arabidopsis

<u>PAD4</u>

- modulates phytoalexin synthesis
- modulates salicylic acid synthesis
- controls resistance against aphids

Transgenic wheat overexpressing PAD4

WRKY18 encoding a transcription factor is involved in defense against *F. graminearum*

3. Targeting non-host defense mechanism for controlling FHB

Bacterial flagellin protein derived flg22 peptide enhances resistance against *F. graminearum*

http://www.apsnet.org/education/introplantp ath/Topics/plantdefenses/images/fig05.jpg

Target the flagellininducible mechanism or enhancing FHB resistance in wheat

4. Plant metabolites for enhancing FHB resistance

FHB resistance inducing factor present in petiole exudates of bacterial pathogen challenged Arabidopsis

Summary

- > SA \rightarrow important role in defense against *F. graminearum*
 - SA signaling through NPR1 suppresses macroconidia germination
- ➤ JA → dichotomous role; susceptibility factor early during infection; subsequently contributes to defense
- Other candidate genes that promote resistance: PAD4 and WRKY18
- Candidate susceptibility genes/mechanisms: 9-LOX (oxylipin)
- Other defense mechanisms to control FHB: flg22 inducible
- Arabidopsis derived metabolites for enhancing FHB resistance

Acknowledgements

Dr. Ragiba Makandar Vamsi Nalam Dr. Ratnesh Chaturvedi

Dr. Harold Trick (Kansas State Univ.) Dr. Ruth Dill-Macky (Univ. Minnesota) Dr. Yanhong Dong (Univ. Minnesota)

